

Hydrogen refuelling station with integrated metal hydride compressor: layout features and experience of two-year operation

LOTOTSKYY, Mykhaylo¹; <u>DAVIDS, Moegamat Wafeeq¹</u>; SWANEPOEL, Dana²; LOUW, Gerhard²;

KLOCHKO, Yevgeniy¹; SMITH, Fahmida³; HAJI, Fatema³; TOLJ, Ivan^{1,4}; SITA, Cordellia¹; LINKOV, Vladimir¹

1 HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville, South Africa

- ² TF Design (Pty) Ltd, Stellenbosch, South Africa
- 3 Impala Platinum Ltd, Springs, South Africa

4 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Thermodynamics, Split, Croatia

In [1,2] we reported about development of metal hydride (MH) extension tank for fuel cell powered forklift, along with H₂ refuelling station with integrated MH compressor. An overview of the MH compressors developed at SAIAMC and HySA Systems can be found in [3].

Here, we present the details about layout and operation of the H₂ refuelling station at Impala Platinum refineries in Springs, South Africa, since its start-up in October 2015 (officially launched on March 31, 2016). The station provides H₂ dispensing at the pressure up to 185 bar and uses pipeline H₂ (P~50 bar) available at the customer site. H₂ compression to P=200 bar with productivity up to 13 Nm³/h is provided by the integrated 1-stage metal hydride (MH) H₂ compressor which uses steam (T~130 °C) for the heating and circulating water (T~20 °C) for the cooling; both steam and water are also available from the customer infrastructure. The station also includes H₂ dispenser, buffer tank (standard gas cylinder pack), and control block on the basis of Siemens Program Logic Controller (PLC) which provides fully automated system operation. Switching H₂ and steam / water flows is carried out with the help of remotely controlled, pneumatically actuated valves and auxiliary check valves. The H₂ discharge line is also equipped with a safety relief valve for H₂ venting if overpressure (>210 bar) takes place. Additionally, at P=200 bar the control block switches the system into standby mode when both MH compression modules are cooled down and their gas manifolds are connected to the H₂ supply line. The H₂ dispensing is independent on the compressor operation and takes from 6 to 15 minutes.

Motivation and background

- Hydrogen compression is a main contributor in the capital and operational costs in the H₂ refuelling infrastructure [4].
- The use of MH for thermally-driven H_2 compression can provide efficient solution to mitigate this challenge [5].
- MH compressors are particularly promising for industrial customers who possess necessary infrastructure including pipeline H₂, sources of low-grade heat, etc. [3,6].

H_FCHydrogen and Fuel Cells Progra

Relevance: H₂ compressors dominate station costs and downtime

Contribution of hydrogen compression in the capital cost and maintenance of hydrogen refuelling stations [4].

Pressure – composition isotherms for H₂ –Ti_{0.65}Zr_{0.35}(Mn,Cr,Fe,Ni)_{2+x} system illustrating thermally-driven hydrogen compression using MH [3]. This MH material was selected for the use in the H₂ reuelling station described below.

A simplest one-stage MH H₂ compressor. Periodic heating and cooling of MH containers (1) and (2) provides permanent H₂ compression [5].

Refuelling station with integrated MH compressor: Features

- H₂ dispensing at P=185 bar (~10 min ramp followed by ~5 min holding).
- Maintaining high H₂ pressure (200 bar) for the dispensing system by the integrated thermally driven MH H₂ compressor.
- Certified for the operation in the industrial environment (SA safety regulations).

- Uses services available at the customer's site:
 - Pipeline H_2 (50-60 bar);
 - Low-grade steam (~140 °C); Ο
 - Cooling water (15-20 °C); Ο
 - Compressed air (5.5-7.5 bar); Ο
 - Electric power (< 2 kW). Ο

General layout of H₂ refuelling station with integrated MH compressor

Simplified gas piping diagram of the refuelling station:

1 – one-stage MH compressor comprising of two compression modules (1.1, 1.2), pressure sensors (1.3...1.6), manual shut-off valve $(H_2 \text{ input, } 1.7)$, check valves (1.8, 1.9), remotely controlled shut-off pneumovalves (1.10...1.14), manual shut-off valve (H₂ output, 1.15), safety relief valve (1.16), H₂ coolers (1.17, 1.18); 2 – H₂ dispenser comprising of remotely controlled shut-off pneumo-valves (2.1...2.3), check valves (2.4, 2.5), H_2 mass flow meter (2.6), pressure sensor (2.7), remotely controlled pressure regulator (2.8); 3 buffer; 4 – control system

Assembling (top) and operation (bottom) of the H₂ refuelling station at Impala Platinum refineries

The station is characterised by simplicity in design, operation and service; higher safety and reliability; noiseless operation; and lower capital and operating costs than high-pressure (350-700 bar) hydrogen refuelling stations available on the market. These benefits are due to: (i) lower H_2 dispensing pressure which enables the use of standard gas service components; (ii) slow pressure ramping which prevents overheating of the supplied H_2 and, thus, eliminates the requirement for deep cooling; (iii) the replacement of a mechanical H_2 compressor with the MH one.

Typical operation of the 1-stage MH compressor at Impala Platinum (buffer size 900 L)

- Steam heating (130 °C), water cooling (15..25°C).
- H_2 compression in the range 50 200 bar.
- Productivity up to 13 Nm³/h.
- PLC control; automated switch in standby when achieving 200 bar in the receiving buffer.
- Automatic switch to standby mode at $P(H_2)>200$ bar

Acknowledgements

On-site operation

- In uninterrupted operation at the customer site since October 2015.
- Summary of the operation until December 2017:
- Operating hours (H_2 compression) 3900;
- Standby hours 7200;
- \circ H₂ dispensed 800 Nm³.
- ✤ Number of H₂ fuel cell forklifts in service 1 (Plug Power FC module + HySA Systems H₂ storage MH) extension tank).
- Typical malfunctions, mainly resulting in the drop of the MH compressor productivity:
- o Contamination of the pipelines with very fine powder of the MH material. Resolved by the installation of inline filters (less than 0.01 µ grade) in addition to 0.5 µ grade filters in the MH containers;
- Malfunctions of the control system due to: (i) failures of electric components and (ii) errors of pressure sensors used for a feedback in the control of gas valves;
- Slow decrease of the productivity possibly caused by the accumulation of gas impurities in the system. The problem has been addressed by carrying out periodic (after every 5 full cycles) H₂ venting from the compression modules at the beginning of the heating cycle. Additionally, regeneration (~5 hour long H₂) venting from the heated modules followed by H₂ absorption in the cooled modules during 2 hours) was carried out every 3-5 months resulting in the full recovery of the compressor's productivity.
- On-site operation have shown the feasibility of application of MH H₂ compression technology in medium-pressure (up to 200 bar) refuelling of FC forklifts. We have demonstrated several ways to further optimise the system performance towards increase of reliability, productivity and efficiency.

References

Impala Platinum Limited – co-funder

Department of Science and Technology (DST) via HySA Programme (project KP3-

S02) – co-funder

European Commission, Grant Agreement number: 778307 – HYDRIDE4MOBILITY – H2020-MSCA-RISE-2017 "HYDRIDE4MOBILITY" - support of international

collaboration

[6] V.A. Yartys et al. Appl. Phys. A 122 (2016) 415