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Background

« In 2012-2015, HySA Systems
MAX 500 ADC oo integrated a metal hydride (MH) H,
et storage extension tank in a
- commercial GenDrive 1600-80CEA
el TR e tuel cell power module (Plug Power
Cooling == Inc.) which was installed in a 3
| — e T Components tonne STILL electric forklift.
- B el * Main performances (VDI-60):
Ly _c ps200 oy LU s profect » Energy consumption 11.15 kWh/h.
Raiensare punﬂ&caéon- e > H, fuel consumption 689 NL/kWh
Hy P-50bar | | System: (CGH2 31%, MH 69%).

* The prototype is in operation at
Impala Platinum refineries in
Springs, South Africa, since

C_ | September 2015.

~ » Main malfunctions identified were
. mainly related to Li-ion battery.

[1] Lototskyy, M.V. et al., Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton
exchange membrane fuel cell power module Int. ]. Hydrogen Energy, 41 (2016) 13831-13842.

[2] Lototskyy, M.V. et al., Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module
and metal hydride hydrogen storage extension tank J. Power Sources, 316 (2016) 239-250



Specification and concept design

Donor vehicle: STILL RX60-30L; » Stack: closed cathode FC;
Bus voltage (VDC): 80; » H, storage: integrated MH

Output power (kW): ~15 (average), up to 30 (peak);  storage unit, 20 Nm?;
Dimensions (mm): 840 (L) x 1010 (W) x 777 (H); » Battery bank: deep cycle
Weight (kg): 1800...1900 lead-acid, 8...10 kWh.

Fuel Cell Stack
Anode Humidifier
Cathode Heat Exchanger

H, Recirculation Pump
Air Intake Filter
ooling Radiator and fan
H, Reducer
Cathode Air Compressor
System Control Electronics
ompressor Motor Drive

8.4 kWh SLA Battery Bank
MH Bed Encased in Lead
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The BoP designed
around Ballard 9SSL /
75 Cell FC Stack.
Main subsystems

include:

o The Cathode, Air
Subsystem;

o The Anode, H,
Subsystem;

o The Closed Circuit
Water cooling (stack) /
heating (MH)
subsystem.

Challenges:

o Component selection
constraints (availability,
functionality &
performance, size);

o Insufficient weight
(ballast required);

o Alignment of the
communication
protocols



Stack cooling / MH heating system

e Radiator  \WR-1
?  Stack cooling system is coupled with the
LTt system of heating the MH tank
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MH hydrogen storage

Main challenge of conventional solution (MH
containers in a water tank) is insufficient system
weight. Suggested approach: assembly of cassettes
each comprising several MH containers encased in
lead.

* Special procedure of lead encasing which allows to
simultaneously activate the MH material in the MH
cassette has been developed.

*  When heated with running water to T=40-50 °C, the
cassette releases more than 60% of its full capacity
(~2.5 Nm?) at the H, flow rate of 25 NL/min.

* 8 MH cassettes have been manufactured and installed
in the frame of forklift power module to form,
together with 9L buffer cylinder, a hydrogen storage
tank.

Left fwo ready to-use MH cassettes. Right: MH tank for °  Lhe tank is characterised by H, storage capacity

forklift power module comprising 8 MH cassettes above 20 Nm?’ (1.8 kg) and has a weight ~1.2 tonnes

that allows to provide counterbalancing weight (1850
PR . kg for the whole power module within the space
H, flow rate [NL/min]

T ) constrains) necessary for the safe operation of 3 tonne
T forklift.

M L WH p[wm [:] * The tank can provide >2 hour long H, supply to the
\ 0] s FC stack operated at 11 kWe (H, flow rate of 120
] N NL/min).
e 0o ey © ™ ™ e The refuelling time of the MH tank (T=15-20 °C,
H, charge (left) and discharge (right) performance of the ~ P(H)=150-180 bar) is about 15-20 minutes.
e  MH cassette; water flow ~4 L/min v Patent application filed: UK1806840.3; 26.04.2018

T.P,FR
T.P,FR

o



System prototypmg

All BoP components have been identified,
procured and assembled off-board;

Most of the components are standard, from
automotive industry;

Main challenge — the communication
interface link between the various
components;

The PLC supplier has developed special
firmware for the control system to enable it
to communicate with the components via
CANZ2.0 protocol;

The CAN implementation has been
completed, and all of the BoP components
requiring CAN bus communication have
been integrated into a network controlled by
an industrial PLC system;

Original cell voltage monitoring system has
been developed;

The switching Load Bank Resistors have
been introduced to emulate various
operating conditions.

The off-board test results will be
presented below.

=
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Electrical layout (1)
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 Initial configuration: auxiliary DC/DC converters are connected to 84 (7 x 12) V battery

terminals



H, flow, Current, Voltage

Electrical layout (1): test results
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At maximum stack
power, the battery
voltage drops below
the minimum voltage
required for the
operation of the
auxiliary DC/DC’s
resulting in the stack
shut-down.

Origin - too high
internal resistance of
the lead-acid battery.

Electrical layout
should be modified.



Electrical layout (2)
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* Revised configuration: auxiliary DC/DC converters were removed (auxiliaries connected
directly to 24 V and 48 V branches of the battery bank); one battery was removed from the

bank.



Current, Voltage
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Electrical layout (2): test results
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* No battery voltage

drop was observed.
Unstable operation
when the load power
(peaks) exceeds MAX
stack power.
Heating-up the battery
during the operation at
high load power (incl.
peak load).

Electrical layout
should be further
modified



Electrical layout (3)
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Revised configuration: To compensate for the peak power draw of the load, an ultra capacitor
was added to the system in parallel with the Lead Acid battery
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Electrical layout (3): test results
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Stable operation at peak power up to 30
kW.

The battery contribution to the load power
during the peaks decreases in ~2 times due
to the contribution of ultra capacitor.

The battery is not heated-up.

The battery depth of discharge is also
significantly lower than for the layout (2).
Average fuel cell power required is ~8 kW.

Average energy consumption ~ 9.0 kWh/h
Average load power ~ 8.1 kKW

Average BoP power ~ 900 W

Average H, consumption ~ 900 NL/kWh
Estimated system efficiency ~30%
(related to HHV)



Assembling on-board prototype

Based on the test results
presented above, the Bol?
configuration has been
" updated.
« All BoP parts for the on-
. board prototype have been
£  procured.
» Assembling of the prototype
power module is in progress.
* The control algorithm is

being finalised towards:

o Automatic switch of the
stack to a) Standby, b) Run
and c) Shutdown modes
depending on the system
status;

o Optimisation of the fuel
supply and purging strategy
to reduce H, consumption
and increase efficiency.

von A ana G A BB




Conclusions

General layout of fuel cell power module for 3 tonne electric forklift
with integrated MH hydrogen storage system has been elaborated.
The module fits in the space and weight constrains of the application
and comprises the following components:

o 14.5 kW closed cathode PEMEFC stack (Ballard);

o Lead-acid battery bank;

o Advanced metal hydride hydrogen storage tank (20 Nm? H,).
Test bench prototype of the power module has been built and tested
in various hardware configurations.

The optimal electrical system layout providing it stable operation at
presence of peak loads (up to 30 kW) has been identified including:

o Powering of auxiliary system components directly from the

sections of the battery bank;

o Sizing of the battery bank;

o Introducing ultra-capacitors.

Further increase of the overall system etficiency by the optimisation
of purging strategy, together with the assembling of the on-board
prototype, is underway.
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